OMB Approval Number: 2050-0095 Approved for Use Through: 1/92

				IDENTIFICATION					
POTENTIAL HAZARDOUS WASTE SITE			State: NJ		CERCLIS Number: D982530073				
PRELIMINARY ASSESSMENT FORM					ERCLIS Discovery Date: 3/27/92				
1. Gene	ral Site Info	rmation							
Name: VANGUA	RD VINYL SIDI	NG, INC.		Street CHARL		ess: WATER ST	REETS		
City: State GLOUCESTER CITY NJ			State: NJ	Zip Co 08030	de:	County		Co. Code: 04	Cong. Dist: 01
Latitude: Longitude: Approx. 39° 53' 28.0" 75° 7' 43.0"			Approx.	Area of 2 acre		Status of Site: Inactive			
2. Owne	r/Operator In	formation							
Owner: VANGUA	RD VINYL C/O	KERM INVE	STMENT	Operato VANGUA	or: ARD VI	NYL SIDI	NG, IN	C.	
	Address: BOX 506			Street Address: CHARLES & WATER STREETS					
City: MANVILLE			City: GLOUCE	city: GLOUCESTER CITY					
State: NJ	Zip Code: 08835	Telephon	e:	State: Zip Code: Telep NJ 08030			phone:		
Type of Ownership: Private					y Identi Program				

	2222				ID	ENTIFICATI	ON	
POTENTIAL HAZARDOUS WASTE SITE					State: NJ		CERCLIS Number: D982530073	
PRELIMINARY ASSESSMENT FORM				Discovery 3/27/92	Date:			
3. Site Evaluator In	formation							
Name of Evaluator: EILEEN STEWART	Agency/Organization DEPE/RPSR			anization		Date Prepared: 4/22/92		
Street Address: 300 HORIZON CENTER				City: ROBBINSVILLE			State: NJ	
Name of EPA or State KEN KLOO/SECTION CH		ontact:	Telephone: 609-584-4280					
Street Address: 300 HORIZON CENTER			0.0.				State: NJ	
4. Site Disposition	(for EPA	use only)					
Emergency Response/Removal Assessment	CERCLIS Recommendation: Lower Priority SI		Signatu	re:				
Recommendation: Yes Date: 3/11/92	Date:	3/18/92		Name: EILEEN Position HSMS	STEWART n:			

DOMENIMIAT HAZADDOME				IDENTIFICATION	
POTENTIAL HAZARDOUS WASTE SITE				State: NJ	CERCLIS Number: D982530073
PRELIMINARY ASSESSMENT	FORM				Discovery Date: 3/27/92
5. General Site Characteristic	:s				
Predominant Land Uses Within 1 Mile of Site: Industrial Commercial	Site Setti Urban	ing:	Ве	•	ration: Year: 1923 r: 1983
Type of Site Operations: Manufacturing				e Generato Onsite	ed:
Other Manufacturing				e Deposit Present O	ion Authorized wner
				e Accessi Yes	ble to the Public
			Schoo	ance to N ol, or Wo 1584 Fee	
6. Waste Characteristics Info	rmation				
Source Type Quantity Drums 2.00e+01 Contaminated soil 2.00e+00	drums V	Solv	vents	pes of Wa ry/Hospit	
		Physic Soli	id	tate of W	Maste as Deposited
Tier Legend C = Constituent W = Wastes V = Volume A = Area	tream				

	DOMENIAT UN CADDOLIC			
POTENTIAL HAZARDO WASTE SITE	State: NJ	CERCLIS D98253	Number:	
PRELIMINARY ASSES	PRELIMINARY ASSESSMENT FORM			ry Date:
7. Ground Water Pathway				
Is Ground Water Used for Drinking Water Within 4 Miles: No	Is There a Suspected Release to Ground Water: No	List Sec Population Ground War From:	on Serve	d by
Type of Ground Water Wells Within 4 Miles: Municipal Private	Have Primary Target Drinking Water Wells Been Identified: No	0 - 1, >1/4 - 1, >1/2 - 1		
Depth to Shallowest Aquifer: 190 Feet Karst Terrain/Aquifer Present:	Nearest Designated Wellhead Protection Area:	>2 - 3 >3 - 4	Miles Miles Miles	111304 160093
No	None within 4 Miles	Total		311314

Page: 5

	POTENTIAL HAZARDOUS WASTE SITE		ENTIFICATION		
			CERCLIS Number: D982530073		
PRELIMINARY ASSESSMENT FORM	М	CERCLIS Discovery Date			
8. Surface Water Pathway			Part 1 of 4		
Type of Surface Water Draining Site and 15 Miles Downstream: River	Shortest Overland Source to Surface		ce From Any		
		0 Feet			
Is there a Suspected Release to Surface Water: No	Site is Located >10 yr - 100		dplai		
8. Surface Water Pathway	·		Part 2 of 4		
Drinking Water Intakes Along the Surface Water Migration Path: No Have Primary Target Drinking Water Intakes Been Identified: No					

Secondary Target Drinking Water Intakes: None

r:

PA-Score 1.0 Scoresheets VANGUARD VINYL SIDING, INC. - 04/22/92

8. Surface Water Pathway

Part 3 of 4

Fisheries Located Along the Surface Water Migration Path: Yes

Have Primary Target Fisheries Been Identified: No

Secondary Target Fisheries:

Fishery Name Water Body Type/Flow(cfs)

DELAWARE RIVER large stream/river/ >1000-10000

8. Surface Water Pathway

Part 4 of 4

Wetlands Located Along the Surface Water Migration Path? (y/n) Yes

Have Primary Target Wetlands Been Identified? (y/n) No

Secondary Target Wetlands:

Water Body/Flow(cfs) Frontage(mi)

large stream/river/ >1000-10000 0.1 to 1

large stream/river/ >1000-10000 0.1 to 1

Other Sensitive Environments Along the Surface Water Migration Path: No

Have Primary Target Sensitive Environments Been Identified: No

Secondary Target Sensitive Environments:

None

POTENTIAL HAZARDOUS

WASTE SITE

PRELIMINARY ASSESSMENT FORM

State: CERCLIS Number: D982530073

CERCLIS Discovery Date: 3/27/92

9. Soil Exposure Pathway

Are People Occupying Residences or Attending School or Daycare on or Within 200 Feet of Areas of Known or Suspected Contamination: No

Number of Workers Onsite:

None

Have Terrestrial Sensitive Environments Been Identified on or Within 200 Feet of Areas of Known or Suspected Contamination: No

10. Air Pathway

Total Population on or Wit		No
Onsite	0	
0 - 1/4 Mile	0 Wetlands Located	
>1/4 - 1/2 Mile 35	506 Within 4 Miles of the Site: 1	No
	264	
	147	
>2 - 3 Miles 1113	304 Other Sensitive Environments Located	
>3 - 4 Miles 1600	093 Within 4 Miles of the Site:	No
Total 311:	· · · · · · · · · · · · · · · · · · ·	

Sensitive Environments Within 1/2 Mile of the Site:
None

OMB Approval Number: 2050-009 Approved for Use Through:

Site Name: VANGUARD VINYL SIDING, INC.

CERCLIS ID No.: D982530073

Street Address: CHARLES & WATER STREETS City/State/Zip: GLOUCESTER CITY, NJ 08030

Investigator: EILEEN STEWART

Agency/Organization: DEPE/RPSR
Street Address: 300 HORIZON CENTER City/State: ROBBINSVILLE, NJ

Date: 4/22/92

WASTE CHARACTERISTICS

Waste Characteristics	(WC) Calculations:		
1 DRUMS	Drums	WQ value	maximum
Volume	2.00E+01 drums	2.00E+00	2.00E+00
2 CONTAMINATED SOIL	Contaminated soil	WQ value	maximum
Area	2.00E+00 acres	2.56E+00	2.56E+00

WQ total 4.56E+00

Waste Characteristics Score: WC = 18

Ground Water Pathway Criteria List Suspected Release	
Are sources poorly contained? (y/n/u)	Y
Is the source a type likely to contribute to ground water contamination (e.g., wet lagoon)? (y/n/u)	ט
Is waste quantity particularly large? (y/n/u)	N
Is precipitation heavy? (y/n/u)	Y
Is the infiltration rate high? (y/n/u)	Y
Is the site located in an area of karst terrain? (y/n)	N
Is the subsurface highly permeable or conductive? (y/n/u)	Y
Is drinking water drawn from a shallow aquifer? (y/n/u)	N
Are suspected contaminants highly mobile in ground water? (y/n/u)	U
Does analytical or circumstantial evidence suggest ground water contamination? (y/n/u)	N
Other criteria? (y/n) N	
SUSPECTED RELEASE? (y/n)	N

Summarize the rationale for Suspected Release:

Ground Water Pathway Criteria List Primary Targets

Is any drinking water well nearby? (y/n/u)

Has any nearby drinking water well been closed? (y/n/u)

Has any nearby drinking water well user reported foul-testing or foul-smelling water? (y/n/u)

Does any nearby well have a large drawdown/high production rate? (y/n/u)

Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u)

Does analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u)

Does any drinking water well warrant sampling? (y/n/u)

Other criteria? (y/n)

PRIMARY TARGET(S) IDENTIFIED? (y/n)

Summarize the rationale for Primary Targets:

Page: 4

GROUND WATER PATHWAY SCORESHEETS

athway Characteristics		. <u></u>		Ref.
Do you suspect a release? (y/n)		No)	
Is the site located in karst te	rrain? (y/n)	No)	
Depth to aquifer (feet):		19	0	
Distance to the nearest drinking	g water well	(feet): 44	180	
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Refe	rences
1. SUSPECTED RELEASE	0			
2. NO SUSPECTED RELEASE		500		
LR =	0	500		
argets				
TARGETS	Suspected Release	No Suspected Release	Refe	rences
3. PRIMARY TARGET POPULATION 0 person(s)	0			
4. SECONDARY TARGET POPULATION Are any wells part of a blended system? (y/n) Y	0	4212		
5. NEAREST WELL	0	18		
6. WELLHEAD PROTECTION AREA None within 4 Miles	0	0		
7. RESOURCES	0	5		
T =	0	4235		
			_	
ASTE CHARACTERISTICS WC =	0	18		
			1 ·	
ROUND WATER PATHWAY SCORE:	1	.00		

Page: 5

PA-Score 1.0 Scoresheets VANGUARD VINYL SIDING, INC. - 04/22/92

Ground Water Target Populations

Primary Target Population Drinking Water Well ID	Dist. (miles)	Population Served	Reference	Value
None				
			Total	

Secondary Target Population Distance Categories	Population Served	Reference	Value
0 to 1/4 mile	0		0
Greater than 1/4 to 1/2 mile	3506		323
Greater than 1/2 to 1 mile	8264		167
Greater than 1 to 2 miles	28147		294
Greater than 2 to 3 miles	111304		2122
Greater than 3 to 4 miles	160093		1306
		Total	4212

Apportionment Documentation for a Blended System

GLOUCESTER CITY WATER DEPT. - FOUR WELLS >1/2-1 mile, 12,500 people serviced. BROOKLAWN WATER DEPT. - THREE WELLS >1/2-1 MILE, 2,520 PEOPLE SERVICED. NATIONAL PARK WATER DEPT. - TWO WELLS > 3-4 MILES, 3,550 PEOPLE SERVICED. N.J. AMERICAN WATER DEPT. - FIVE WELLS > 3-4 MILES, TWO WELLS > 2-3 MILES. SERVICES 23,440 PEOPLE. COLLINGSWOOD WATER DEPT. - SIX WELLS > 3-4 MILES, ONE WELL >2-3 SERVICES 20,000 PEOPLE. BELLMAWR WATER DEPT. - TWO WELLS >1-2 MILES, TWO WELLS >2-3 MILES. SERVICES 9,520 PEOPLE. CAMDEN CITY WATER DEPT. - THREE WELLS > 3-4 MILES, SERVICE 20,000 PEOPLE . WEST DEPTFORD WATER DEPT. - ONE WELL >2-3 MILES, ONE WELL >3-4 MILES, PART OF AN INTERCONNECTED SYSTEM WITH A TOTAL OF SEVEN WELLS. SYSTEM SERVICES 19,000 PEOPLE. WESTVILLE WATER DEPT. THREE WELLS >1-2 MILES, 7000 PEOPLE SERVICED. DEPTFORD TOWNSHIP MUA - ONE WELL >2-3 MILES, SERVICES 1,100 PEOPLE. WOODBURY TOWNSHIP WATER DEPT. - TWO WELLS >3-4 MILES.PART OF AN INTERCONNECTED SYSTEM COMPRISED OF FIVE WELLS, THIS SYSTEM SERVICES 11,920 PEOPLE. HADDON TWP. WATER DEPT. - FOUR WELLS >3-4 MILES, 12,000 PEOPLE SERVICED. TWO DOMESTIC WELLS ARE LOCATED WITHIN A 1 MILE RADIUS OF THE SITE. APPROXIMATELY 64 RESIDENTS ARE SERVICED BY PRIVATE WELLS IN A >3-4 MILE RADIUS.

Surface Water Pathway Criteria List Suspected Release	
Is surface water nearby? (y/n/u)	Y
Is waste quantity particularly large? (y/n/u)	N
Is the drainage area large? (y/n/u)	N
Is rainfall heavy? (y/n/u)	Y
Is the infiltration rate low? (y/n/u)	N
Are sources poorly contained or prone to runoff or flooding? (y/n/u)	Y
Is a runoff route well defined(e.g.ditch/channel to surf.water)? (y/n/u)	Y
Is vegetation stressed along the probable runoff path? $(y/n/u)$	N
Are sediments or water unnaturally discolored? (y/n/u)	N
Is wildlife unnaturally absent? (y/n/u)	N
Has deposition of waste into surface water been observed? (y/n/u)	N
Is ground water discharge to surface water likely? (y/n/u)	N
Does analytical/circumstantial evidence suggest S.W. contam? (y/n/u)	N
Other criteria? (y/n) N	
SUSPECTED RELEASE? (y/n)	N

Summarize the rationale for Suspected Release:

	Surface Water Pathway Criteria List Primary Targets	
•	Is any target nearby? (y/n/u) If yes: N Drinking water intake Y Fishery N Sensitive environment	Y
	Has any intake, fishery, or recreational area been closed? (y/n/u)	N
	Does analytical or circumstantial evidence suggest surface water contamination at or downstream of a target? (y/n/u)	N
	Does any target warrant sampling? (y/n/u) If yes: N Drinking water intake N Fishery N Sensitive environment	N
	Other criteria? (y/n) N	
	PRIMARY INTAKE(S) IDENTIFIED? (y/n) Summarize the rationale for Primary Intakes:	N
H	continued	

Page: 9

	cont	inue	d								
-	Other	cri	teri	.a?	(y/n)		N				
_							PRIMARY	FISHERY(IES)	IDENTIFIED?	(y/n)	N
	Summar	ize	the	rat	ionale	for	Primary	Fisheries:			
									·		
						···		· · · · · · · · · · · · · · · · · · ·			
	Other	cr	iter	ia?	(y/n)		N				w
					PRIMAR	Y SE	NSITIVE :	ENVIRONMENT (S) IDENTIFIED?	(y/n)	N
	Summar	ize	the	ra	tionale	for	Primary	Sensitive En	vironments:		
									•		

Page: 10

SURFACE WATER PATHWAY SCORESHEETS

thway Characteristics			Ref.		
Do you suspect a release? (y,	0				
Distance to surface water (fe					
Flood frequency (years):		10	00		
What is the downstream distance (miles) to: a. the nearest drinking water intake? b. the nearest fishery? c. the nearest sensitive environment? 0.6					
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References		
1. SUSPECTED RELEASE	0				
2. NO SUSPECTED RELEASE		500			
LR	= 0	500			

Drinking Water Threat Targets

TARGETS	Suspected Release	No Suspected Release	References
 Determine the water body type, flow (if applicable), and number of people served by each drinking water intake. 			
4. PRIMARY TARGET POPULATION 0 person(s)	0		
5. SECONDARY TARGET POPULATION Are any intakes part of a blended system? (y/n): N	0	0	
6. NEAREST INTAKE	0	0	
7. RESOURCES	0	5	
T =	0	5	

Drinking Water Threat Target Populations

Intake Name	Primary (y/n)	Water Body Type/Flow	Population Served	Ref.	Value
None					

Total Primary Target Population Value Total Secondary Target Population Value 0

Apportionment	Documentation	for a	Blended	System
				·
	•		•	
			•	
H				

Page: 13

Human Food Chain Threat Targets

TARGETS	Suspected Release	No Suspected Release	References
8. Determine the water body type and flow for each fishery within the target limit.			
9. PRIMARY FISHERIES	0		
10. SECONDARY FISHERIES	0	12	
T ==	0	12	

Human Food Chain Threat Targets

Fishery Name	Primary (y/n)	Water Body Type/Flow	Ref.	Value
1 DELAWARE RIVER	N	>1000-10000 cfs		12
			:	
	Total Total	Primary Fisheries Values Value	ue alue	0 12

Environmental Threat Targets

TARGETS		Suspected Release	No Suspected Release	References
11. Determine the water and flow (if applica for each sensitive environment.				
12. PRIMARY SENSITIVE EN	VIRONMENTS	0		
13. SECONDARY SENSITIVE	ENVIRONS.	0	10	
	Т =	0	10	

Environmental Threat Targets

Sensitive Environment Name	Primary (y/n)	Water Body Type/Flow	Ref.	Value
1 DELAWARE RIVER TIDAL FLAT	N	>1000-10000 cfs		12
2 BIG TIMBER CREEK TIDAL FL	N	>1000-10000 cfs		12
The second secon				
Motol Dei		sitive Environments Val		
Total Pri Total Sec	mary sensondary Se	ensitive Environments Value	alue	ŏ

Page: 15

PA-Score 1.0 Scoresheets VANGUARD VINYL SIDING, INC. - 04/22/92

Surface Water Pathway Threat Scores

Threat	Likelihood of Release(LR) Score	Targets(T) Score	Pathway Waste Characteristics (WC) Score	Threat Score LR x T x WC / 82,500
Drinking Water	500	5	18	1
Human Food Chain	500	. 12	18	1
Environmental	500	10	18	1

SURFACE WATER PATHWAY SCORE:	3
------------------------------	---

Soil Exposure Pathway Criteria List Resident Population	
Is any residence, school, or daycare facility on or within 200 feet of an area of suspected contamination? (y/n/u)	N
Is any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator? (y/n/u)	N
Is there a migration route that might spread hazardous substances near residences, schools, or daycare facilities? (y/n/u)	N
Have onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u)	N
Does any neighboring property warrant sampling? (y/n/u)	N
Other criteria? (y/n) N	
RESIDENT POPULATION IDENTIFIED? (y/n)	N

Summarize the rationale for Resident Population:

Page: 17

SOIL EXPOSURE PATHWAY SCORESHEETS

Pathway Characteristics				Ref.
Do any people live on or within 200 ft of areas of suspected contamination? (y/n)		No		
Do any people attend school or o of areas of suspected contamin	daycare on or w nation? (y/n)	rithin 200 ft	No	
Is the facility active? (y/n):			No	,
LIKELIHOOD OF EXPOSURE	Suspected Contamination	References		
1. SUSPECTED CONTAMINATION LE =	550			
Targets				
2. RESIDENT POPULATION 0 resident(s) 0 school/daycare student(s)	0			
3. RESIDENT INDIVIDUAL	0			
4. WORKERS None	0			
5. TERRES. SENSITIVE ENVIRONMENTS	0			
6. RESOURCES	5			
T =	5			
·				
WASTE CHARACTERISTICS WC =	18			
		!		
RESIDENT POPULATION THREAT SCORE:	1			
		1		
NEARBY POPULATION THREAT SCORE:	2			
Population Within 1 Mile: 10,001	- 50,000			
SOIL EXPOSURE PATHWAY SCORE:	3			

Page: 18

Soil Exposure Pathway Terrestrial Sensitive Environments

Terrestrial Sensitive Environment Name	Reference	Value
None		
Total Terrestrial Sensitive Environments Value		

Page: 19

VANGUARD VINYL SIDING, INC 04/22/92	
Air Pathway Criteria List Suspected Release	
Are odors currently reported? (y/n/u)	N
Has release of a hazardous substance to the air been directly observed? (y/n/u)	N
Are there reports of adverse health effects (e.g., headaches, nausea, dizziness) potentially resulting from migration of hazardous substances through the air? (y/n/u)	N
Does analytical/circumstantial evidence suggest release to air? (y/n/u)	N
Other criteria? (y/n) N	
SUSPECTED RELEASE? (y/n)	N
Summarize the rationale for Suspected Release:	

Page: 20

AIR PATHWAY SCORESHEETS

			-	
Pathway Characteristics				Ref.
Do you suspect a release? (y/n)	Do you suspect a release? (y/n) No)	
Distance to the nearest individ	dual (feet):	15	580	
				,
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Refe	cences
1. SUSPECTED RELEASE	0			
2. NO SUSPECTED RELEASE		500		
LR =	0	500		
l'argets				
TARGETS	Suspected Release	No Suspected Release	Refe	rences
3. PRIMARY TARGET POPULATION 0 person(s)	0			
4. SECONDARY TARGET POPULATION	. 0	105		
5. NEAREST INDIVIDUAL	0	2		

0

0

0

0

0

5

112

MACHE OUADACHEDICHIOS			
WASTE CHARACTERISTICS	WC =	0	18
AIR PATHWAY SCORE:		12	

T =

6. PRIMARY SENSITIVE ENVIRONS.

8. RESOURCES

7. SECONDARY SENSITIVE ENVIRONS.

Page: 21

Air Pathway Secondary Target Populations

Distance Categories	Population	References	Value
Onsite	0		0
Greater than 0 to 1/4 mile	0		0
Greater than 1/4 to 1/2 mile	3506	,	28
Greater than 1/2 to 1 mile	8264		8
Greater than 1 to 2 miles	28147		8
Greater than 2 to 3 miles	111304		38
Greater than 3 to 4 miles	160093		23
	Total Secondary Popula	ation Value	105

Page: 22

Air Pathway Primary Sensitive Environments

Sensitive Environment Name		Reference	Value	
None				
•				
·				
Total Primary Sensitive Environments Value				
ir Pathway Secondary Sensitive Environments				
Sensitive Environment Name	Distance	Reference	Value	
None				
·				

Total Secondary Sensitive Environments Value

Page: 23

SITE SCORE CALCULATION	SCORE
GROUND WATER PATHWAY SCORE:	100
SURFACE WATER PATHWAY SCORE:	3
SOIL EXPOSURE PATHWAY SCORE:	3
AIR PATHWAY SCORE:	12
SITE SCORE:	50

JMMZ	ARY	
1.	Is there a high possibility of a threat to any nearby drinking water well(s) by migration of a hazardous substance in ground water?	r No
	If yes, identify the well(s).	
	•	
	If yes, how many people are served by the threatened well(s)? 0	:
2.	Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water? A. Drinking water intake B. Fishery C. Sensitive environment (wetland, critical habitat, others)	No No
	If yes, identity the target(s).	
3.	Is there a high possibility of an area of surficial contamination within 200 feet of any residence, school, or daycare facility?	No
	If yes, identify the properties and estimate the associated populat	ion(s)
4.	Are there public health concerns at this site that are not addressed by PA scoring considerations?	No
	If yes evolain.	

Page: 25

REFERENCE LIST